Original Article


MiR-216a accelerates proliferation and fibrogenesis via targeting PTEN and SMAD7 in human cardiac fibroblasts

Jinsong Tao, Jingyi Wang, Chunyu Li, Weiwei Wang, Hao Yu, Jinhui Liu, Xiangqing Kong, Yan Chen

Abstract

Background: Heart failure (HF) is a progressive disease with relatively poor prognosis and lacks effective therapy, and the discovery of dysregulated microRNAs (miRNAs) and their role in cardiac fibroblasts have provided a new avenue for elucidating the mechanism involved in HF.
Methods: Two datasets of GSE53080 and GSE57338 were used to screen the miRNAs profiling and analysis the differentially expressed genes (DEGs) in HF. QRT-PCR was used to detect miR-216a between HF and healthy controls (HC). Cell counting kit-8 (CCK-8) assay and clonogenic assay were used to analyze the effect of proliferation and fibrogenesis. Then dual-luciferase activity assay and western blotting were used to confirm the key mechanism.
Results: In this study, the results showed that miR-216a was significantly up-regulated in HF and over- expression of miR-216a promoted proliferation and enhanced the fibrogenesis in the human cardiac fibroblasts (HCF) cells. Phosphatase and tensin homolog (PTEN) and mothers against decapentaplegic homolog 7 (SMAD7) were both validated as the direct target genes of miR-216a, which were confirmed by the dual-luciferase reporter assay. MiR-216a decreased the expression of PTEN and SMAD7 leading to the activation of Akt/mTOR and TGF-βRI/Smad2 in the HCF cells, which might act as a promoter of cardiac fibrosis.
Conclusions: Our study might provide a promising approach for the treatment of HF in the future.

Download Citation